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Abstract

The statistical procedure EI–R, in which point estimates produced by the King (1997)

ecological inference technique are used as dependent variables in a linear regression, can

be logically inconsistent insofar as the assumptions necessary to support EI–R’s first stage

(ecological inference via King’s method) can be incompatible with the assumptions support-

ing its second stage (linear regression). In light of this problem, we derive a specification test

for logical consistency of EI–R and describe options available to a researcher who confronts

test rejection. We then apply our test to the implementation of EI–R in Burden and Kimball’s

(1998) study of ticket splitting and find that this implementation is logically inconsistent. In

correcting for this problem we show that Burden and Kimball’s alleged substantive results

are not results at all and instead are artifacts of a self-contradictory statistical technique.



1 Introduction

It has become quite common for researchers to use point estimates produced by the King

(1997) ecological inference technique as dependent variables in second stage linear regressions.

This two-stage statistical procedure, which Herron and Shotts (2001) call EI–R, is strongly

advocated by King, who says that “[EI–R] has enormous potential for uncovering new in-

formation” (p. 279). Burden and Kimball (1998), for example, use King–based estimates of

district–level ticket splitting rates as dependent variables in second stage regressions which

examine why individuals cast split ticket ballots. Similarly, Gay (2001) employs estimates

of black turnout rates, produced by King’s ecological inference technique, in regressions that

seek to determine whether black citizens vote at higher rates in elections that include black

Congressional candidates. Other examples of EI–R can be found in Kimball and Burden

(1998), Voss and Lublin (1998), Cohen, Kousser and Sides (1999), Wolbrecht and Corder

(1999), Voss and Miller (2000), Burden and Kimball (2002), and Lublin and Voss (2002).

Clearly, EI–R has achieved widespread usage despite the fact that it was only recently

proposed. We show, however, that applications of this two-stage procedure can be logically

inconsistent insofar as the assumptions necessary to support the procedure’s first stage (eco-

logical inference via King’s method) can be incompatible with the assumptions supporting its

second stage (linear regression). In contrast, we say that an application of EI–R is logically

consistent when its first stage and second stage assumptions are not mutually contradictory.

The matter of EI–R’s being logically consistent merits attention because EI–R has two

stages, unlike, say, a regular regression that has only a single stage. Whenever a researcher

employs a two-stage statistical procedure, she must simultaneously adopt assumptions that

support the procedure’s first and second stages. Previous work has not sought to determine

whether this is possible in the case if EI–R. Indeed, to the best of our knowledge all published

and working–paper implementations of EI–R simply assume that the procedure’s two stages

are inherently compatible.

Such a blithe attitude is not warranted, and we show here that the assumptions necessary

to support EI–R can be self–contradictory. This result follows from the fact that standard
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implementations of King’s technique to an ecological dataset (the first stage of EI–R) assume

that there is no aggregation bias in the dataset. Nonetheless, a linear regression which uses

King–based point estimates as dependent variables (the second stage of EI–R) can imply the

existence of aggregation bias.

To illustrate this clash of assumptions, suppose that a researcher wishes to estimate and

explain disaggregated turnout rates of African-American and white voters but for this task

has access only to precinct–level racial composition and turnout data. To apply King’s

ecological inference technique to her turnout data and estimate both African-American and

white turnout rates by precinct (first stage of EI–R), the researcher must assume that a

precinct’s black turnout rate is not a function of the extent to which it contains African-

Americans, i.e., there is no aggregation bias in her data.

Now, suppose that the researcher estimates a regression (second stage of EI–R) in which

black turnout rates are modeled as a linear function of precinct–level income and education

data. If the regression’s right hand side covariates are correlated with the fraction of a

precinct’s population that is African-American, then the researcher’s second stage regression

virtually guarantees (in a way we make precise later) that a precinct’s black turnout rate is a

function of the fraction of its population that is African-American, i.e., there is aggregation

bias. Thus, in this example the assumptions behind the second stage of EI–R contradict the

assumptions in its first stage.

This is problematic at two levels. At a fundamental level, any standard philosophy of sci-

ence requires researchers to adopt internally consistent sets of assumptions. To do otherwise,

as is possible with EI–R, is to state simultaneously “A is true” and “A is false.” Once two

mutually contradictory premises are adopted, any implication can be logically derived, i.e.,

all subsequent analysis is meaningless.

At a more pragmatic level, logical inconsistency of EI–R is problematic because EI–R,

like all statistical techniques, must ultimately depend on a set of assumptions, often called

regularity conditions. Although King (1997) does not present a set of sufficient conditions

under which EI–R estimates are well-behaved, i.e., consistent, asymptotically normal, and so
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forth, any such set must consist only of assumptions that are not self-contradictory. Therefore,

when EI–R is logically inconsistent, the estimates it produces have no known properties. No

one knows, that is, if the estimates produced by a logically inconsistent application of EI–R

are unbiased, consistent, and so forth. This problem is independent of whether a software

implementation of EI–R produces “standard errors” for EI–R estimates. Standard errors

only have meaning if they are grounded in a logically consistent set of assumptions.

Given the problems that result if EI–R is logically inconsistent, it is important for re-

searchers to determine whether a particular application of the technique is problematic in

this way. In theory—and fortuitously, one might argue—not all implementations of EI–R

are logically inconsistent. Indeed, we show that logical consistency of EI–R is application–

dependent insofar as EI–R is logically consistent in some empirical applications yet logically

inconsistent in others (although, as we explain later, it is exceedingly hard to imagine that

politically interesting applications of EI–R are logically consistent).

Thus, we derive a specification test for EI–R, and the test is implemented with a series

of bivariate regressions. Interpreting the output of our test is simple: if any of the slope

estimate t–statistics produced by the bivariate regressions are statistically significant (at a

pre-specified confidence level), then EI–R as applied to the dataset is logically inconsistent

and its estimates have no known properties. If, on the other hand, all of the t values are

insignificant, then logical consistency of EI–R cannot be rejected.

When the test for logical consistency of EI–R rejects in a given ecological dataset, a

researcher who wants to study the dataset has only two options. One, she can abandon EI–R

entirely and choose a different method of data analysis. Or, two, she can explicitly incorporate

the covariates that were to be used in a second stage regression into the first stage of the EI–

R procedure and use what King calls the extended ecological inference model. This model,

which we discuss in detail later, has only one stage and therefore is not at risk of logical

inconsistency. In addition, King’s extended model is designed to handle aggregation bias in

ecological data, and this is useful since the EI–R logical inconsistency on which we focus is

caused by unmodeled aggregation bias.
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Several things about the relationship of our analysis to previous research are worth noting.

First, our recommendation of King’s extended model as a replacement for EI–R when the

latter is logically inconsistent needs to be understood in light of the difficulty of ecological

inference (e.g., Achen and Shively 1995). Indeed, no one should engage in ecological inference

without recognizing that the ecological inference problem cannot be solved in any meaningful

way.1 Rather, all proposed solutions to this problem are based on strong and often untestable

assumptions about aggregate data.

Second, our critique of EI–R and King’s ecological inference technique differs fundamen-

tally from the arguments in Tam (1998) and Cho and Gaines (2000), both of which claim that

aggregation bias is a common phenomenon in ecological data and that diagnostics advocated

by King (1997, ch. 9) provide little help in identifying and rectifying it. We do not claim

that our test for logical consistency of EI–R is a general test for aggregation bias. Rather,

our critique applies only to the use of King’s technique within the context of the combined

EI–R procedure, and what we argue is that the assumptions which support EI–R must be

compatible across EI–R’s two stages.

In Section 2 we provide notation and details on EI–R. Section 3 then presents our specifi-

cation test for logical consistency of EI–R and explains how to interpret it. Section 4 considers

the options faced by a researcher whose ecological dataset fails the test, and in Section 5 we

apply the test to a dataset from Burden and Kimball’s (1998) study of ticket splitting. This

dataset easily fails the specification test, and thus we use King’s extended model to analyze

it. The results of our extended model analysis are dramatically different from Burden and

Kimball’s published findings on the causes of ticket splitting, and this illustrates the costs

of ignoring logical inconsistency in EI–R. Section 6 offers general comments on EI–R and

concludes.

1This is because, simply put, an ecological inference problem consists of a system of p equations with 2p
unknowns. There is no unique solution to such a system.
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2 Overview of Ecological Inference and EI–R

This section provides some details on King’s ecological inference technique and explains

how the technique’s output is used in second stage regressions.

2.1 Initial Details on King’s Ecological Inference Technique

Suppose that we have precinct–level data for an election: let Ti ∈ [0, 1], i = 1, . . . , p,

denote precinct i’s turnout rate in the election and Xi ∈ [0, 1] the fraction African-American

of precinct i. The goal of ecological inference is using Ti and Xi to estimate β
b
i , the fraction

of blacks in precinct i who voted in the election, and βw
i , the fraction of whites who voted.

King develops two different implementations of his ecological inference technique, standard

and extended. Details of these implementations are in King (1997, ch. 6–8). Critiques of

King’s approach to ecological inference can be found in Freedman, Klein, Ostland and Roberts

(1998), Tam (1998), Cho and Gaines (2000), and McCue (2001). Until further notice our

comments on King’s technique apply to the standard model.

King’s standard model is grounded in the accounting identity for Ti:

Ti = βb
i Xi + β

w
i (1−Xi) . (1)

Equation (1) reflects the fact that total turnout in precinct i is the precinct’s black turnout

plus its white turnout. King’s model assumes that
(

βb
i , β

w
i

)

have a truncated bivariate normal

distribution on the unit square and that βb
i (β

w
i ) can be decomposed into a mean Bb (Bw)

and a deviation from this mean εbi (ε
w
i ). It therefore follows from equation (1) that

Ti =
(

Bb + εbi

)

Xi + (B
w + εwi ) (1−Xi) (2)

= BbXi +Bw (1−Xi) + ε
b
i Xi + ε

w
i (1−Xi) (3)

= Bw +Xi

(

Bb − Bw
)

+ εi, (4)

where εbi and ε
w
i are mean zero disturbances and where εi = Xi ε

b
i + (1−Xi) ε

w
i . The means
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(

Bb,Bw
)

, standard deviations (σb, σw), and correlation (ρ) of β
b
i and β

w
i are collected in a

5–vector ψ =
{

Bb,Bw, σb, σw, ρ
}

.2

Three facts about the above equations are worth noting. First, εbi in equation (2) re-

flects unmodeled variation in βb
i just as a disturbance in a regular linear regression reflects

unmodeled terms that affect the regression’s dependent variable (and similarly for εwi and

βw
i ). Second, since it follows from an accounting identity, equation (4) holds exactly. Third,

King’s technique requires that the disturbance εi, conditional on Xi, be mean zero. Indeed,

since King assumes E
(

εbi |Xi

)

= E (εwi |Xi) = 0, where E (·) denotes expectation, εi has this

property.3

These twin assumptions on the black and white disturbances, εbi and ε
w
i , respectively,

imply that there is no aggregation bias. Substantively speaking, if E
(

εbi |Xi

)

= 0 then, once

fraction black Xi in precinct i is known, there is nothing in the random disturbance ε
b
i that

affects βb
i and is also mean dependent on Xi (and similarly for ε

w
i and β

w
i ). It cannot be

the case, according to King’s standard ecological inference technique, that εbi includes a non-

random component (e.g., median family income in precinct i) that is a linear function of Xi

(percent black in precinct i) and also influences βb
i (black turnout in precinct i).

Let B̂b, B̂w, σ̂b, σ̂w, and ρ̂ denote the point estimates of Bb, Bw, σb, σw, and ρ, re-

spectively, based on applying King’s standard model to an ecological dataset.4 These five

point estimates are collected in a 5–vector ψ̂. Assuming that the standard model’s regularity

conditions hold, B̂b Pr
−→ Bb where

Pr
−→ denotes convergence in probability. In other words,

B̂b is a consistent estimate of Bb, and a similar statement applies to the other four point

estimates in ψ̂. In general, then, ψ̂
Pr

−→ ψ. Let β̂b
i (β̂

w
i ) be the point estimate of β

b
i (β

w
i )

produced by applying King’s technique to an ecological dataset Xi and Ti, i = 1, . . . , p. See

McCue (2001) for a discussion of these estimates, which by construction are functions of ψ̂,

Xi, and Ti.

2The elements of ψ correspond to elements in a related 5–vector ψ̆ where ψ is a function of ψ̆. We ignore
ψ̆ because the distinction between it and ψ is numerical rather than substantive.

3In addition, King’s technique assumes that there is no spatial autocorrelation, i.e., that Ti and Tj are
independent for i 6= j.

4King’s standard model can be implemented using likelihood theory or priors can be employed in which
case the model is Bayesian. Both implementations are compatible our analysis.
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2.2 Definition of EI–R

In EI–R, β̂b
i (or β̂

w
i , as discussed below) point estimates are used as dependent variables

in a second stage regression. Namely, King suggests that a researcher who wants to estimate

βb
i = γ0 + γ

′Zi + ν
b
i , (5)

instead estimate

β̂b
i = γ0 + γ

′Zi + ν
b
i , (6)

where the difference between equations (5) and (6) is that β̂b
i (observed) substitutes for β

b
i

(unobserved). Here, γ0 is a constant, γ a k–vector of slope parameters to be estimated, Zi a

k–vector of covariates, and νb
i a disturbance assumed to be uncorrelated with β̂

b
i . Let γ̂0 and

γ̂ denote the least squares estimates of γ0 and γ, respectively.

Thus, EI–R consists of, first, estimating β̂b
i using King’s ecological inference technique and,

second, estimating equation (6) with least squares.5 The final products of EI–R, therefore,

are the estimates γ̂0 and γ̂, and, ultimately, whether EI–R is statistically consistent depends

on whether γ̂0
Pr

−→ γ0 and γ̂
Pr

−→ γ. On the other hand, first stage statistical consistency of

EI–R depends on whether ψ̂
Pr

−→ ψ where the 5–vector ψ̂, as noted previously, is produced

by applying King’s standard model to an ecological dataset.

Of course, equations (5) and (6) could just as easily have had βw
i and β̂

w
i , respectively,

on their left hand sides. In this case, EI–R is based on

βw
i = α0 + α

′Zi + ν
w
i , (7)

even though in practice it estimates

β̂w
i = α0 + α

′Zi + ν
w
i . (8)

5King suggests using weighted least squares when estimating equation (6). Weighting, however, is not
germane to our discussion of logical inconsistency.
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There is no loss of generality in assuming that the same covariate vector Zi appears in both

equations (5) and (7), and there is also no loss of generality in assuming that Zi is mean zero.

3 The Logical Consistency Test for EI–R

The two underlying regressions in a given application of EI–R are equations (5) and (7).

Substituting these into the accounting identity of equation (1) yields

Ti = α0 +Xi (γ0 − α0) +Xi (γ − α)′ Zi + α
′Zi + ν

b
i Xi + ν

w
i (1−Xi) (9)

= α0 +Xi (γ0 − α0) + ε̃i, (10)

where ε̃i = Xi (γ − α)′ Zi+α
′Zi+ν

b
i Xi+ν

w
i (1−Xi). To be logically consistent, a researcher

who uses EI–R must simultaneously adopt the assumptions that support both EI–R’s first

and second stages. Therefore, it has to be true that E (ε̃i|Xi) = 0 since, with reference to

the presence of εi in equation (4), this is precisely what was assumed earlier.

We henceforth assume E
(

νb
i |Xi

)

= E (νw
i |Xi) = 0. This conservative assumption

guarantees that two of the four components of ε̃i are mean zero conditional on Xi, as

required for logical consistency of EI–R. However, this is not enough insofar as our as-

sumptions about νb
i and νw

i do not ensure that E (ε̃i|Xi) = 0. Rather, for this lat-

ter equality to hold it must also be true that E
(

Xi (γ − α)′ Zi + α
′Zi|Xi

)

= 0, where

E
(

Xi (γ − α)′ Zi + α
′Zi|Xi

)

= (Xi (γ − α) + α)′E (Zi|Xi). We have, therefore, just derived

the following result:

Proposition 1 For EI–R to be logically consistent, it must be true that

(Xi (γ − α) + α)′E (Zi|Xi) = 0.

If γ = α = 0 then the restriction in Proposition 1 clearly holds. This is a trivial case, of

course, since one would never want to assume γ = α = 0. Doing so assumes that all second

stage slope coefficients are zero and that there is nothing to estimate! We cannot, therefore,

assume that the restriction in Proposition 1 holds on account of γ = α = 0, and we must
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look elsewhere to see what might help with it.

Suppose that E (Zi|Xi) 6= 0. Is it possible in this circumstance that the restriction in

Proposition 1 holds? Unless the slope vectors γ and α satisfy an extremely tight and arbitrary

restriction, the answer to this question is no. To see this, suppose for purposes of exposition

that α and γ are scalars. Then, E (Zi|Xi) 6= 0 implies that the restriction in Proposition 1

holds only if Xi (γ − α) + α = 0, which simplifies to γ = α (1− 1/Xi). It is obvious that,

if Xi takes on more than two different strictly positive values, which it must for the first

stage of EI–R to be identified, then there are no values of γ and α that are consistent with

γ = α (1− 1/Xi) except γ = α = 0.

This logic is easily generalizable to the case where α and γ are vectors. In this general

case, if E (Zi|Xi) 6= 0, then the restriction in Proposition 1 holds only under extremely tight

constraints on γ and α. These latter constraints are non-generic meaning that, if γ and

α were drawn from a continuous probability distribution, they would hold with probability

zero.

On the other hand, if E (Zi|Xi) = 0, then the restrictions in Proposition 1 hold regardless

of γ and α. Thus,

Proposition 2 Barring trivial and probability zero circumstances, logical consistency of EI–

R requires E (Zi|Xi) = 0.

Recall that Zi was assumed, without loss of generality, to be mean zero. Therefore, Propo-

sition 2 requires that the unconditional expectation of Zi be identical to its expectation

conditional on Xi.

If, however, Xi does contain information about the mean of Zi so that E (Zi|Xi) 6= 0,

then it follows that, barring trivial and probability zero circumstances, E (ε̃i|Xi) 6= 0. Since

ε̃i = εbi + ε
w
i , E (Zi|Xi) 6= 0 therefore implies that either εbi and/or ε

w
i from EI–R’s first stage

contains unmodeled variables. Thus, when the restriction in Proposition 2 does not hold,

then the second stage of EI–R implies that its first stage is affected by aggregation bias.

It is straightforward to test whether, in a given application of EI–R, the conditional

expectations in Proposition 2 are zero. But before we explain how to do this, it is useful to
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think in a substantive way about what Proposition 2 implies.

Consider Gay’s (2001) EI–R analysis of the precinct-level socioeconomic covariates that

affect black and white turnout. In Gay’s framework, as in the running example that has been

used here, Xi is the fraction African-American of precinct i, β
b
i (β

w
i ) is precinct i’s black

(white) turnout rate, and Zi is a vector of covariates assumed to affect β
b
i and β

w
i .

It is quite reasonable to believe that elements of Gay’s Zi vector, e.g., precinct-level

education and income levels in her Congressional race analyses of Michigan and Pennsylvania,

do in fact influence voter turnout levels (e.g., Mebane and Sekhon 2002). We would therefore

expect a regression of βb
i on Zi to return significant results. But, of course, β

b
i cannot be

observed and this leads Gay to EI–R which calls for estimating a regression of β̂b
i on Zi.

6

For Gay’s Michigan and Pennsylvania EI–R analyses to be logically consistent, it must be

true that knowledge of a precinct’s percent black (Xi) tells us nothing about the precinct’s per

capita income (an element of Gay’s Zi). This is untenable in light of contemporary American

social realities: if a precinct has a large African-American population, then all things equal

this precinct will have a relatively low per capita income. Nonetheless, without assuming

that a precinct’s per capita income is not a function of its racial composition, and without

making a host of similarly implausible assumptions for the other right hand side variables in

her second stage regressions, Gay’s use of EI–R is logically inconsistent.

In general, then, the mathematical restrictions in Proposition 2 have very strong sub-

stantive implications. Indeed, it is hard to imagine any politically interesting applications of

EI–R that contain Zi vectors unrelated to Xi levels as required in the proposition. In theory,

however, such applications might exist, and hence it is important to develop a specification

test for logical consistency of EI–R.

To test the conditional expectation restrictions in Proposition 2 on a given ecological

dataset, one regresses each element of Zi—recall that Zi is a k vector—on Xi. If any of

the resulting k slope estimates are statistically significant (intercepts are irrelevant, since as

6Gay (2001) estimates many second stage regressions; see her Tables 3 and 4. Thus, our reference to
“Gay’s EI–R analysis” is a generic way of discussing any of these regressions. We focus on Gay’s Michigan
and Pennsylvania analyses in the text because these include socioeconomic variables in a second stage Zi

vector. Nonetheless, Gay’s other analyses almost certainly suffer from logical inconsistency as well.
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noted before we can assume without loss of generality that the mean of Zi is zero) then it

follows that, barring trivial and probability zero circumstances, the restriction in Proposition

2 does not hold. Thus, our test for logical consistency of EI–R requires nothing more than

estimating linear regressions with data that EI–R itself requires in the first place.

It is important to recognize that the test we propose for logical consistency of EI–R is one

of necessity as opposed to sufficiency. That is, an application of EI–R must pass our test; if

not, it is logically inconsistent. However, if an application of EI–R does pass the test, it does

not therefore follow that the application is logically consistent. Rather, as we discuss below,

it is still possible that the application is logically inconsistent in some manner not covered by

our test. Or, the failure to reject could simply reflect that fact that our test does not have a

power of one.

4 What to do when an Ecological Dataset Fails the Specification Test

When a researcher’s ecological dataset fails the test for logical consistency of EI–R, he

has two options. One, he can abandon EI–R entirely and choose another method of data

analysis. Or, two, he can model the aggregation bias that caused test failure and in so doing

avoid a second stage regression. We now discuss the latter option.

Modeling aggregation bias in the first stage of EI–R requires King’s extended model

(which is a one stage model, as opposed to the two stage EI–R). Recall that, in the standard

implementation of King’s ecological inference technique the mean of
(

βb
i , β

w
i

)

is
(

Bb,Bw
)

,

and this mean vector is fixed across observations. However, in King’s extended model the

two elements of this latter vector are denoted
(

Bb
i ,B

w
i

)

where subscripts denote dependence

on observation i.

Readers interested in the details of the extended model should consult King (1997, pp.

168–74). In brief, this model posits that Bb
i andBw

i are linear functions of covariates in much

the same way as EI–R posits that βb
i and β

w
i are linear functions of covariates. That is, the

extended model assumes something akin to Bb
i = θ′bZi where θb is a vector of parameters to

be estimated and, as before, Zi is a vector of covariates. A product of the extended model,
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then, is an estimate θ̂b of the parameter vector θb (and, similarly, an estimate θ̂w of θw based

on Bw
i = θ′wZi). For numerical reasons (equation 9.2, p. 170), King’s extended model does

not assume the precise linear form noted above for the two means Bb
i and Bw

i . However, the

expressions for these means capture the essence of the model.

The extended model allows dependence of βb
i and β

w
i to be modeled in one stage; hence,

when the extended model is employed there are no second stage regressions. If, for instance,

Zi contains only a single covariate, then θb (a scalar) describes how this covariate influences

βb
i and θw describes how it influences β

w
i . Similarly, when Zi contains multiple covariates,

then θb and θw are vectors with elements corresponding to covariates in Zi.

When King’s extended model is used, assessing the impact of covariates on βb
i (and β

w
i , if

this, too, is an object of study) requires considering first stage standard errors produced by

King’s technique. Namely, for each covariate used to parameterize the means Bb
i of β

b
i and

Bw
i of β

w
i in the extended model, King’s method produces two coefficient estimates (akin

to elements of θ̂b and θ̂w) and two associated t–statistics. Significance tests based on these

t–statistics can be used to determine whether covariates are related to βb
i and β

w
i .

4.1 Combining the Extended Model with EI–R

A researcher may be tempted to include some elements of the second stage covariate vector

Zi in both the first stage of King’s extended model as well as in a second stage regression

(e.g., Burden and Kimball 1998). This practice should be avoided as it can lead to internal

incoherence. Specifically, as illustrated in Section 5, it is possible for a first stage extended

ecological inference model to indicate that a given covariate has a significant impact on βb
i

and/or βw
i whereas a second stage regression finds no evidence of such an effect, or vice versa.

This would leave a researcher with contradictory estimates of the same quantity. Thus, to

implement EI–R either King’s standard model should be used followed by a second stage

regression or King’s extended model should be employed and there should be no second stage

regression.
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4.2 Dominance of the Extended Model

When our test for logical consistency of EI–R rejects when applied to a given ecological

dataset, EI–R is dominated by King’s extended model insofar as every problem which affects

the latter also affects EI–R, plus EI–R is logically inconsistent. When one statistical procedure

has associated with it a collection of problems and when a second procedure has the same

collection of problems plus others, then the latter procedure should not be used.

The issue of dominance is an important one because one might think that quantitative

work in political science routinely violates assumptions and that logical inconsistency in EI–R

is no worse than other problems that are regularly ignored by scholars engaged in ecological

inference. Forthcoming evidence in Section 5 suggests that logical inconsistency in EI–R is

not a minor problem. Moreover, even if the problem were minor, researchers should always

seek to make their analysis as internally coherent as possible and to violate as few assumptions

as possible.

Furthermore, another reason to use King’s extended model in lieu of EI–R concerns other

sources of logical inconsistency that can plague EI–R. We have focused solely on whether

the two stages of EI–R make contradictory assumptions about aggregation bias. But, there

are other ways in which EI–R can be logically inconsistent. For instance, EI–R’s first stage

assumes that
(

βb
i , β

w
i

)

have a truncated, bivariate normal distribution, and this has implica-

tions for the disturbance terms νb
i and ν

w
i in equations (5) and (7), respectively. It is unknown

whether second stage assumptions about νb
i and ν

w
i are compatible with first stage bivariate

normality, and the use of King’s extended model renders this issue moot.

Finally, and unrelated to logical inconsistency, Herron and Shotts (2001) argue that EI–R

estimates are inconsistent regardless of whether the first stage of EI–R is compatible with its

second. Thus, according to Herron and Shotts, logical inconsistency is irrelevant and EI–R

is by construction an inaccurate procedure.
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5 An Application of the Test for Logical Consistency in EI–R

We now apply our test for logically consistency of EI–R to the ecological dataset used by

Burden and Kimball (1998) in their study of ticket–splitting in the United States Congres-

sional and Presidential elections of 1992.7 For Burden and Kimball’s House election data, Xi

is the proportion of House voters in Congressional district i who voted for Michael Dukakis in

the 1992 presidential race, and Ti is the fraction who voted for the Democratic House candi-

date.8 Furthermore, βb
i is the fraction who voted for a Democratic Congressional candidate as

well as for Dukakis (straight ticket Democrats), and βw
i is fraction who voted for Republican

presidential candidate George H. W. Bush and a Democratic Congressional candidate (Bur-

den and Kimball call these RD ticket splitters). In their application of EI–R to the study of

RD ticket splitting, Burden and Kimball use estimates β̂w
i as dependent variables in a second

stage regression. Burden and Kimball also use values of 1− β̂b
i as dependent variables in an

EI–R analysis of DR ticket splitting, i.e., rates at which individuals voted Democratic in the

presidential race and Republican in a Congressional contest.9

The second stage covariate vector Zi that Burden and Kimball use to study RD ticket

splitting has four elements. These consist of an indicator as to whether district i had a

Democratic incumbent (Democratic Incumbent), the Democratic candidate’s proportion of

House campaign spending (Spending Ratio), whether district i allowed straight–party voting

(Ballot Format), and whether district i was located in the South (South).

To apply our specification test for logical inconsistency of EI–R to Burden and Kimball’s

analysis of RD ticket splitting, we regress the four elements of Burden and Kimball’s Zi vector

on Xi; this produces four regressions. In terms of DR ticket splitting, Burden and Kimball

7Cho and Gaines (2000) identify several errors in Burden and Kimball’s dataset, but we use the original
dataset to maintain compatibility with the published study. Burden and Kimball’s data is available from the
ICPSR (ftp://ftp.icpsr.umich.edu/pub/PRA/outgoing/s1140).

8As Burden and Kimball note, because of rolloff Xi is not actually known and must be estimated. Like
Burden and Kimball, we estimate Xi using King’s ecological inference technique. As pointed out in Herron
and Shotts (2001), these estimated turnout rates are contaminated by errors. However, for purposes of
comparability we follow Burden and Kimball and treat these estimates as if they were true values.

9We comment only on Burden and Kimball’s House data because their Senate election dataset is extremely
small (n = 32). Furthermore, Burden and Kimball augment their Senate data with House data in a way that
is very hard to justify.
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Table 1: Testing for Logical Consistency in EI–R as Applied to Burden and Kimball (1998)

Variable Estimate

Democratic Incumbent 1.78
(10.6)

Spending Ratio 1.59
(12.6)

Ballot Format -0.110
(0.499)

South -1.04
(6.87)

Republican Incumbent -1.71
(10.8)

n 361

Note: t–statistics in parentheses, based on
heteroskedastic-consistent standard errors

use the same covariates as in their RD analysis but with a Republican incumbent indicator

in place of Democratic Incumbent. Table 1 display results for both RD and DR specification

tests (which are the same except for the incumbent issue).

Consider the top row of Table 1. The t–statistic (10.6) from a regression of “Democratic

Incumbent” on Xi (percent Dukakis in District i) is significantly positive at conventional

confidence levels, and this immediately implies that Burden and Kimball’s EI–R analysis of

RD ticket splitting is logically inconsistent. Similarly, the “Republican Incumbent” t–statistic

in Table 1 is significantly negative—implying that the probability of a Congressional District’s

having a Republican incumbent is relatively low in Districts that have many Dukakis voters—

and thus Burden and Kimball’s DR ticket splitting analysis is also logically inconsistent.

In light of Burden and Kimball’s Zi vector, our results on logically inconsistency should

hardly be considered surprising. For example, the regression output described in Table 1

implies that the probability of a Congressional District’s having a Democratic incumbent

(element of Zi) is relatively high in Districts that have many Dukakis voters (high Xi Dis-

tricts). Indeed, it would be very anomalous if, as required by Proposition 2, there were no

relationship between a District’s presidential vote proclivity and the partisan affiliation of its
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incumbent Congressional representative, i.e., it would be very anomalous if the mathematical

restriction in Proposition 2 held when applied to Burden and Kimball’s EI–R analysis of RD

ticket splitting.

Of course, there is nothing special about incumbent indicators. In fact, practically every

result in Table 1 implies that Burden and Kimball’s DR and RD applications of EI–R are

logically inconsistent. It is crucial to recognize that logical inconsistency follows if even one

element of Zi is mean dependent on Xi. So, when almost all specification tests reject for a

given ecological dataset, i.e., when all elements of Zi are mean dependent on Xi, then there

is overwhelming evidence against EI–R.

Thus, a researcher who wants to study RD and DR ticket splitting with Burden and

Kimball’s dataset should use King’s extended ecological inference model, a model that can

be used in one stage to estimate how covariates affect ticket splitting rates. See Table 2

for results.10 The table also reports verbatim Burden and Kimball’s second stage regression

estimates which, as now known, are based on a logically inconsistent application of EI–R.11

It is important to note that EI–R and extended model estimates for RD ticket splitting

(and DR ticket splitting as well) are not directly comparable. Extended model coefficients

are not regression coefficients but rather represent shifts in the mean of the distribution from

which βb
i and β

w
i are drawn; see p. 170 in King (1997) for a full explanation. However, to

determine whether Burden and Kimball’s overall EI–R conclusions differ from those produced

by an analysis of ticket splitting that uses King’s extended model, one can compare the signs

and the t–statistics of the RD and DR estimates in Table 2.

In their analysis of RD ticket splitting, Burden and Kimball find that Democratic In-

cumbent, Spending Ratio, and South all have positive and significant effects on Republican

10Our implementation of King’s extended model, which is based on standard likelihood theory, does not
incorporate priors. We tried a large variety of different starting values for the extended model, found what
appear to be two local maxima, and thus present results for the local maximum with the higher loglikelihood
value. We are confident that this is the true function maximum since there was a huge difference between
the two maxima we found and because the other local maximum was clearly substantively unreasonable; its
estimated fraction of Democratic presidential voters who voted for Democratic House candidates was only
slightly higher than its estimate of the fraction of Republican presidential voters who voted for Democratic
House candidates.

11The Burden and Kimball (1998) EI–R results are from Tables 6 and 7 on pp. 539 and 540, respectively.
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Table 2: King’s Extended Model as Applied to Burden and Kimball’s
Analysis of House Elections

RD Estimates DR Estimates
Variable EI–R Extended EI–R Extended

Democratic Incumbent 0.107∗∗∗ 0.116∗∗∗ — —
(0.015) (0.0273)

Republican Incumbent — — 0.085∗∗∗ 0.151∗∗∗

(0.011) (0.0360)
Spending Ratio 0.350∗∗∗ 0.0845 -0.252∗∗∗ -0.588

(0.021) (0.324) (0.015) (0.375)
Ballot Format -0.032∗∗∗ 0.201 0.003 0.277

(0.008) (0.199) (0.006) (0.225)
South 0.052∗∗∗ 0.220 0.007 0.219

(0.009) (0.183) (0.006) (0.212)

Note: standard errors in parentheses; ∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05

presidential voters’ propensities to split their tickets. Moreover, Burden and Kimball find

that Ballot Format has a negative and significant effect. In the extended model estimates

for RD ticket splitting, however, only one of these results holds: Democratic Incumbent has

a positive and significant effect on RD ticket splitting. The other three coefficient estimates,

which in the logically inconsistent EI–R analysis are highly significant, are in fact statistically

insignificant once this problem is corrected for.12

We now turn to Burden and Kimball’s analysis of DR ticket splitting. In the rightmost two

columns of Table 2, the logically inconsistent EI–R results indicate that Republican Incumbent

and Spending Ratio have highly significant effects on DR splitting. In the extended model

analysis, though, Republican Incumbent has a significant effect whereas there is no evidence

to support the claim that Spending Ratio is similarly significant.

There are, notably, no results in Table 2 that are significant in an extended model analysis

yet insignificant in EI–R. This means that, by employing EI–R in a logically inconsistent

way, Burden and Kimball generated evidence of “findings” that, in fact, are not findings once

12This does not mean, of course, that Burden and Kimball’s claims are unequivocally wrong. Rather, it
means that there is no evidence suggesting that their claims are correct.
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logical consistency is adjusted for.13

Thus, we conclude that Burden and Kimball’s alleged substantive results on ticket split-

ting are not results at all and instead are artifacts of a self-contradictory statistical technique.

Using a method that is logically consistent we have shown that, with one exception (the ef-

fect of incumbent partisan affiliation), all of Burden and Kimball’s substantive findings are

statistically unfounded. The exception is notable since it is quite intuitive: House districts

with Democratic incumbents are relatively likely to produce split tickets that support both

a Republican presidential candidate as well as the incumbent Congressional incumbent (and

symmetrically for districts with Republican Congressional incumbent). Furthermore the ex-

tended model analysis of Burden and Kimball’s House data returns several non-null results,

and this means that its failure to do so in a number of cases does not reflect an overall

inability of the extended model to estimate anything in a precise way.14

For instance, Burden and Kimball claim that, “The most robust finding from [various

applications of EI–R] is that congressional campaign spending has a dramatic influence on the

percentages of voters who split their ballot[s] (p. 542).” In fact, there is no evidence in Burden

and Kimball’s dataset to support this assertion. Similarly, Burden and Kimball claim that

statistical significance of South in the RD analysis leads to a rejection of theories of intentional

ticket splitting (p. 540). In fact, South is insignificant (t = 1.2) in the logically consistent

RD analysis. These comments do not mean, of course, that all of Burden and Kimball’s

conclusions are incorrect. However, Burden and Kimball’s data simply do not support their

substantive claims about the causes of split ticket voting and, in particular, Burden and

Kimball’s dataset does not cast aspersions on theories of intentional ticket splitting insofar

13To confirm that the differences identified in Table 2 were due to the distinction between King’s extended
model and EI–R, we replicated Burden and Kimball’s EI–R analysis and found the same regression results
they reported in their article.

14Besides logically inconsistency, Burden and Kimball’s RD analysis also suffers from the internal incoherence
discussed in Section 4.1. This is because Burden and Kimball include South in their first stage ecological
inference model as well as in second stage regressions. They allow, to be precise, this covariate to influence
βw

i , the probability that an individual votes RD. For reasons that are unclear, they do not allow South to
influence 1− βb

i , the probability that the individual votes DR. The first stage estimate of the impact of South

on RD ticket splitting is 0.0622 with a standard error of 0.0410 (t = 1.52, which differs from the t-statistic in
Table 2 because Burden and Kimball’s first stage did not include variables other than South). Thus, according
to Burden and Kimball’s first stage there is no compelling evidence that South affects RD ticket splitting.
But, according to their second stage, there is evidence of this.
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as South is concerned.

Our results on Burden and Kimball’s House dataset raise an important question: are

problems with applications of EI–R common or is the example we use here anomalous? Of

course, without an exhaustive study of numerous research projects that use second stage

regressions, we will never know precisely how many published applications of EI–R are based

on logically inconsistent assumptions.15

Nonetheless, in many cases where applied researchers use EI–R it is exceedingly hard to

imagine that elements of the second stage covariate vector Zi are related to β
b
i (as assumed in

a second stage regression) yet unrelated to Xi (as assumed in first stage ecological inference).

For example, in Cohen, Kousser and Sides’s (1999) study of crossover voting in state legislative

elections in Washington and California, Xi is the fraction of individuals in district i who are

Democrats.16 Moreover, one element of Cohen, Kousser and Sides’s second stage covariate

vector Zi is an indicator for whether there is a Democratic incumbent in district i. It is in

theory conceivable that Democratic incumbency in district i is unrelated to whether district

i has a large number of Democrats in it. However, this seems quite unlikely, and logical

consistency of Cohen, Kousser and Sides’s application of EI–R must therefore be questioned.

6 Discussion

We have proposed a test for logical consistency of the statistical procedure EI–R and illus-

trated its usefulness by applying the test to an ecological dataset from Burden and Kimball

(1998). The test easily rejects logical consistency of Burden and Kimball’s EI–R analysis of

the causes of ticket splitting in House elections. Moreover, in a logically consistent statistical

analysis of Burden and Kimball’s ticket splitting dataset, the vast majority of Burden and

Kimball’s findings vanish. Indeed, we suspect that many if not the vast majority of imple-

mentations of EI–R are logically inconsistent, and that the ostensible results generated by

15As Burden and Kimball (1998) and Gay (2001) are the most prominent, published applications of EI–R,
we sought to scrutinize both of these studies for evidence of logical inconsistency. We were, however, unable
to scrutinize Gay’s results because she would not release her dataset to us (personal communication with
Claudine Gay, 2002).

16Cohen, Kousser and Sides’s notation uses Pi instead of Xi and Vi instead of Ti.
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these implementations are artifacts of a self-contradictory statistical technique.

If our critique of EI–R is taken seriously, we should expect to see numerous researchers

who wish to estimate second stage regressions instead relying on King’s extended model,

which does not suffer from logical consistency problems. However, Rivers (1998) notes that

King’s extended model is fragile in the sense of being barely identified. The importance of

this point is as follows: if it is difficult to identify using King’s extended model the impact of

covariates on unknown, disaggregated quantities, then it should be commensurately difficult

to use a second stage regression to do this. Yet second stage regressions are easily identified

and they make it appear as if identifying the impact of covariates on disaggregated quantities

is a simple matter. Of course, second stage regressions are identified precisely because they

treat ecological inference point estimates as data.

A desire for identification might explain why researchers often turn to EI–R in the first

place (of course, the identification achieved is illusory, since EI–R is identified only because

it treats unknown quantities as known). Even so, one might wonder why anyone would ever

estimate a second stage regression when covariates to be included in such a regression can be

incorporated into a first stage extended ecological inference model.

We suspect that researchers have turned to EI–R, and may wish to continue doing so,

because applications of its logical replacement, King’s extended model, are likely to generate

numerous null results from which few substantive conclusions about political behavior can

be drawn. A prevalence of null results does not reflect flaws in the extended model. Rather,

null results reflect the difficulty of incorporating covariates in ecological inference.

In contemporary political science research, statistically significant “findings” are valued

more than null results. But, findings should not be taken seriously if they exist solely because

of a statistical quirk, i.e., solely because they appear in a logically inconsistent application of

EI–R yet not in a logically consistent ecological inference model. Some problems in political

science, and the study of ticket splitting may be one of these, may simply be intractable with

aggregate data, and it is better to recognize and accept this rather than attempt to extract

unsupportable findings using a potentially misleading statistical technique.
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